Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1059551, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532470

RESUMO

Ensiling legume with cereal is an effective method to ensure the energy rich-feed, but no information is available on the microbial fermentation mechanism of intercropped Lablab purpureus (Lablab) and sweet sorghum in the saline-alkaline region. Therefore, the present study investigated the silage quality and microbial community of intercropped Lablab and sweet sorghum silages grown in the saline-alkaline region with or without inoculation of Lactobacillus plantarum (LP). The experimental treatments were prepared according to the Lablab and sweet sorghum planting patterns: Lablab and sweet sorghum sowing seed ratios were 1:1 (L), 5:1 (M), and 9:1 (H). After harvesting, each mixture was treated with LP or sterilized water (CK), followed by 60 days of fermentation. Results showed that both LP inoculation and intercropping significantly raised the lactic acid (LA) content and decreased the pH value, acetic acid (AA), and ammonia-N in intercropped silages. The LP addition and intercropping also improved the relative feed value by reducing structural carbohydrates. Moreover, LP silages had a greater relative abundance of Lactobacillus than CK silages, and its relative abundance increased with an increased seed-sowing ratio of Lablab in intercropping. LP was the prevalent species in LP silages compared to CK silages, and its relative abundance also increased with an increased seed-sowing ratio of Lablab in intercropping. The genus Lactobacillus was negatively correlated with ammonia-N (R = -0.6, p = 0.02) and AA (R = -0.7, p < 0.01) and positively correlated with LA (R = 0.7, p < 0.01) and crude protein (R = 0.6, p = 0.04). Overall, the intercropped seeding ratios of Lablab and sweet sorghum of ≥ 5:1 with LP inoculation resulted in better fermentation quality and preservation of nutritional components providing theoretical support and guidance for future intercropped protein-rich silage production in the saline-alkaline region.

2.
Microbiol Spectr ; 10(5): e0248322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36190422

RESUMO

Protein-rich Sesbania cannabina and sugar-rich sweet sorghum [Sorghum dochna (Forssk.) Snowden] are characterized by their higher tolerance to saline-alkaline stresses and simultaneous harvests. They could be utilized for coensiling because of their nutritional advantages, which are crucial to compensate protein-rich forage in saline-alkaline regions. The current study investigated the fermentation quality, microbial community succession, and predicted microbial functions of Sesbania cannabina and sweet sorghum in mixed silage during the fermentation process. Before ensiling, the mixtures were treated with compound lactic acid bacteria (LAB) inoculants followed by 3, 7, 14, 30, and 60 days of fermentation. The results revealed that the inoculated homofermentative species Lactobacillus plantarum and Lactobacillus farciminis dominated the early phase of fermentation, and these shifted to the heterofermentative species Lactobacillus buchneri and Lactobacillus hilgardii in the later phase of fermentation. As a result, the pH of the mixed silages decreased significantly, accompanied by the growth of acid-producing microorganisms, especially L. buchneri and L. hilgardii, which actively influenced the bacterial community structure and metabolic pathways. Moreover, the contents of lactic acid, acetic acid, 1,2-propanediol, and water-soluble carbohydrates increased, while the contents of ammonia-N and fiber were decreased, with increasing ratios of sweet sorghum in the mixed silage. Overall, coensiling Sesbania cannabina with >30% sweet sorghum is feasible to attain high-quality silage, and the relay action between homofermentative and heterofermentative LAB species could enhance fermentation quality and conserve the nutrients of the mixed silage. IMPORTANCE The coensiling of Sesbania cannabina and sweet sorghum is of great practical importance in order to alleviate the protein-rich forage deficiency in saline-alkaline regions. Furthermore, understanding the microbial community's dynamic changes, interactions, and metabolic pathways during ensiling will provide the theoretical basis to effectively regulate silage fermentation. Here, we established that coensiling Sesbania cannabina with >30% sweet sorghum was effective at ensuring better fermentation quality and preservation of nutrients. Moreover, the different fermentation types of LAB strains played a relay role during the fermentation process. The homofermentative species L. plantarum and L. farciminis dominated in the early phase of fermentation, while the heterofermentative species L. buchneri and L. hilgardii dominated in the later phase of fermentation. Their relay action in Sesbania cannabina-sweet sorghum mixed silage may help to improve fermentation quality and nutrient preservation.


Assuntos
Microbiota , Sesbania , Sorghum , Silagem/análise , Silagem/microbiologia , Fermentação , Sorghum/metabolismo , Sorghum/microbiologia , Sesbania/metabolismo , Amônia , Propilenoglicol , Grão Comestível , Ácido Acético/análise , Ácido Láctico/metabolismo , Carboidratos , Açúcares , Água , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...